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Historical context:  
Bumping into the performance ceiling

For some time, particular types of calculations have 
dominated scientific studies. They include the 
performance of repetitive tasks, usually with a strong 
emphasis on double-precision floating-point data types, 
while operating on increasingly larger problem sets.

Savvy users worked with computer vendors to extend 
the classical von Neumann architecture to include 
support for faster processing of these specific 
calculations. Vector and parallel processing originated 
from these designs, and later on, more generalized 
distributed processing. Vector processing enables 
multiple operations to occur simultaneously per clock 
cycle. It effectively provides a clock-cycle multiplicative 
effect, performing much more work per clock cycle 
than non-vector operations. 

Vector processors worked on architectures that 
enabled high sustained-memory bandwidth and a 
reasonable ratio of floating point operations to memory 
fetch-and-store operations. Writing the most time-
consuming algorithms in a vector manner achieved 
exceptional performance on these early machines. 
Typically, one spoke in terms of average vector length 
and the speedup they achieved over “ordinary” 
processing. For example, a vector length of 64 would 
usually result in a multiplicative factor of about 64x 
over non-vector code in various cases. Programming 
was not that difficult, as existing tools were quite good 
for this. The downside to such architectures was the 
cost associated with their acquisition and ongoing 
operation and maintenance; they were not easy to 
build, and the resulting machines cost millions of dollars 
for small configurations.

1

Overview

Supercomputing has become an essential tool for many users, including those working in the scientific, 
engineering, biomedical, and financial disciplines. Although processing capabilities continue to advance, in many 
cases demand is increasing at an even faster rate. Simulation and analysis problems — once intractable due to 
computational limitations — have become possible. 

Supercomputing technology has evolved from highly specialized and custom circuitry to commodity circuits based 
largely upon x86 instruction-compatible processing hardware. Leveraging economies of scale lowers costs of 
production, amortizes research and development, and simplifies software development, as more programmers are 
familiar with the technologies. Indeed, many supercomputers listed on the TOP500 supercomputers site (http://
www.top500.org) are aggregations of commodity processing units and parts. Programs may be easily ported from 
desktop Linux® machines — which are popular platforms in development and scientific and engineering — to Linux-
based supercomputing systems.

Aggregating large numbers of processors into huge clusters and cluster-like machines, while useful, has a variety of 
limitations. Overcoming these limitations in order to extract the maximum performance from these systems requires 
extensive application of acceleration technologies. In order to understand the limitations and how acceleration 
technology addresses them, this paper will examine why clusters are built, and a brief history of supercomputing 
technology will provide context for the need for acceleration technologies. 
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Parallel processing on “supermicros” in the 1990s was 
based on a number of individual processors that shared 
access to memory. These processors were not as 
robust as vector processors on vectorized algorithms, 
but they provided much faster processing than the 
non-vector portion of the application codes. While the 
code may not have been vectorized, the programmers 
used shared memory parallel (SMP) techniques to 
accelerate as much of the program as possible. For a 
32-CPU system, speedup of nearly 32x was possible 
for well-constructed programs. Superlinear speedup, 
where a program achieves speeds more than N-times 
faster on N processors, was also observed. This 
typically occurs when the program working set (the 
memory used) per processor fits within the processor 
cache. Vendors noted this, and increased their 
processor caches to 8 MB and more in the late 1990s.

As machines grew larger, the inefficiencies inherent in 
this approach thwarted efforts to run huge SMP 
programs. Distributed memory programming (DMP) — as 
seen in MPI, PVM, and other implementations — gained 
favor, laying the foundation for the cluster. 

The impact of specialized processing:
Vector processing

All of these techniques attempted to provide something 
akin to a simple execution model: if a program required 
Nprogram processor clock cycles to complete, and the 
processor had a clock cycle as measured in 
nanoseconds of τcycle, then the total execution time is 
equal to τcompletion.

τcompletion = Nprogram ˙ τcycle

This assumes that each instruction takes the same 
length of time to execute. Though this is not generally 
the case, it could serve as a rough approximation for 
these machines.

A vector program would have a vector portion and a 
non-vector portion, where Nvector is the number of 
cycles executed on the vector processor, the τnon-vector-

cycle is the clock cycle of the scalar processor, the 
τvector-cycle is the clock cycle of the vector processor, 
and the A is average vector length (i.e., how much 
additional work can be done on average over the whole 
of the program, in the vector processor).

So if there were an average vector length of 64 and a 
vector clock cycle close to the non-vector clock cycle, it 
would be possible to get excellent performance (lower 

τTotal value) by moving as much code as possible into 
the vector section of the program.

Put another way, the number of clock cycles required 
for program execution remained “constant,” but how 
they are divided among the functional units, and how 
efficiently they could use all the functional units’ 
resources, governed the performance achieved. The 
more functional resources leveraged per unit time, the 
higher the efficiency, and therefore the higher the 
apparent speedup over serial code.

The impact of specialized processing:
Parallel Processing

Since computer design has largely followed the von 
Neumann architecture, parallel processing yielded a 
remarkably similar set of equations. Gene Amdahl noted 
this when he made the case for the law that now bears 
his name. The basic concept is that total program time 
is the sum of the time to execute the serial and parallel 
components:

τprogram = τserial + τparallel

For a fixed CPU clock cycle of length τcpu, and again, 
assuming the instructions all take the same amount  
of time1, we can write the execution time in terms of 
numbers of instructions executed.

Nprogram = Nserial + Nparallel
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Parallelization

The number of instructions executed will be constant, 
no matter how they are subdivided among proces-
sors. In this representation, the number of instruc-
tions executed in the parallel section Nparallel may be 
represented by A(Ncpu) Nparallel-per-cpu, where Ncpu is the 
number of CPUs running on the parallel program, and 
A(Ncpu) is the parallel speedup—basically the ratio of 
the performance on a single CPU to the Ncpu CPUs. In 
a typical analysis, this is divided by τprogram and called 
the ratio of τserial to τprogram. “s” is the serial fraction of 
the program and the ratio of τparallel to τprogram , or “p,” is 
the parallel fraction of the program. The equation reads: 

1 = s + p
or

1 - p = s

The green represents the parallel portion and red 
represents the serial portion in the figure.

τtotal = (Nprogram – Nvector) ˙ τnon-vector-cycle + Nvector ˙ τvector-cycle_____________________
						                  A
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The parallel fraction “p” means that each Ncpu executes 
1/Ncpu of the parallel cycles of the program. This is 
analogous to the vector processor’s “A” or average 
vector length. 

This immediately gives rise to Amdahl’s law that predicts 
the best-case speedup S(Ncpu) (i.e., the ratio of the 
execution time of the serial and parallel portions of the 

program) as:

S (Ncpu) =           1

Ncpu
(1 – p) +     

p

As increasingly large clusters are used, the Ncpu grows 
and the ratio p/Ncpu becomes infinitesimal. This results  
in the maximum acceleration S(Ncpu) that can be 
expected, governed entirely by the serial or non-vector 
fraction of the program.

S(∞) ≈ 1/s

That is, regardless of whether a system uses a shared 
memory parallel, distributed memory parallel, or vector 
program, there are fundamental performance limits as 
the number of CPUs or vector elements increases.

For most programs, S(Ncpu) is less than Ncpu. This is 
called the sub-linear region. So for a parallel program 
using 1,000 CPUs, operating in a 99% parallel manner 
(p=0.99), the program will achieve a speedup of less 
than 100. This means that less than 100/1,000 or 1/10th 
of the resources are effectively being used. Increasing 
the number of processors will not increase the speedup 
for this program. In other words, simply throwing more 
processors at the problem will not solve it any faster.

Amdahl’s Law

Speedup as a function of parallel fraction (p) and  
number of CPUs.
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The efficiency ε(Ncpu) of this process may be defined 
as:

 ε(Ncpu) = S(Ncpu) / Ncpu

This efficiency is always less than one for normal (i.e., 
non-superlinear) programs. It is also dominated by the 
serial fraction at high CPU counts. Not much can be 
done to improve upon this, apart from minimizing serial 
work in the program or hiding it in a parallel thread so 
that it is non-blocking in relation to the parallel program.

Efficiency

Efficiency as a function of number of CPUs  
at a fixed parallel fraction.
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Clusters offer a low-cost mechanism that provides this 
increase in available processing cycles. As a 
consequence, the aggregate amount of processing 
cycles is quite large — though, as Amdahl’s law shows, 
there are fundamental performance limits in this 
approach. Clusters, like parallel and vector machines, 
provide more processor cycles per unit of time than a 
single processor. In this sense, these systems are 
effectively cycle multipliers, providing Ncpu cycles or  
Avector-length cycles per unit processor clock cycle.

The impact of underlying processor 
technology on performance

In addition, programs are fundamentally bound by the 
performance of the underlying processor technology. 
This performance and power curve has closely followed 
Moore’s Law (which states that general processor 
performance will double every eighteen months) over 
the past three decades.
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Scaled processor power as a function of thime assuming 
Moore’s lawholds..
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If data growth rates are not increasing faster than the 
underlying processor technology, this is not a problem. 
However, for large groups of researchers, engineers and 
scientists whose data sets are growing at exponential 
rates, this is a major challenge.
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For example, consider data growth at Genbank, the 
National Institutes of Health’s genetic sequence 
database. The data, found at ftp://ftp.ncbi.nih.gov/
genbank/gbrel.txt, has the classic hockey stick shape 
indicative of exponential growth. It is instructive to 
normalize Moore’s law against the base pair data and 
compare how processing power has grown in this time.

Some end-users have approached this challenge by 
waiting for the underlying technology to generate an 
order of magnitude or more improvement in performance 
for general-purpose processors. Hypothetically, the user 
can then buy more performance for less money, 
assuming power, space, cooling or other considerations 
are not limiting factors. Unfortunately, this strategy has 
significant shortcomings including:

> �The lost value caused by delays in time-to-insight that 
could be captured by performing analysis sooner 
rather than later.

> �The immediate opportunity cost associated with 
performing more complex calculations faster. In 
commercial applications, like financial analysis, 
underperforming platforms carry economic penalties.

> �The underlying assumption that the growth of raw data 
requiring analysis will return to a more manageable level, 
allowing processing power to catch up.

Finally, this approach is based on an implied 
assumption that performance improvements in the 
underlying processor technology will continue 
indefinitely. This may unfairly discount future challenges 
associated with the process technologies, device 
physics, thermodynamics, and fundamental physical 
limitations of new processors.

A current example: Genomic research

Using genomic data as an example, and postulating that 
computational analytical needs (or computational 
intensity) scales at least as fast as the rate of data 
growth, the best-case scenario would be that 
computational intensity is proportional to volume of 
data. In that case, underlying general-purpose 
processor technologies would provide the computing 
power scaling needed for current and future analysis.

Growth of Bio-IT Computational 
Instensity and Computational Power
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However, this is not the case. Data is growing 
exponentially faster than computing power, 
overwhelming the ability of researchers to model, 
simulate, and analyze. The above graph plots data 
volume and the computational power available to 
process it as a function of time. The gap represents a 
large and rapidly growing problem for life-science 
researchers. Similar data from other fields shows that 
this trend is not limited to life sciences.

The best acceleration or speedup with general-purpose 
processors will be in solutions that emphasize parallel 
execution. That would require a program that is either 
exceptionally well tuned for parallel operation, or parallel 
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by design, such as a Monte Carlo code.

Order-of-magnitude changes in run times are 
reasonable goals. If a computation would ordinarily 
require six months of processing time, an order of 
magnitude speedup would reduce the run time to about 
18.3 days. Unfortunately, this is still not fast enough to 
satisfy most end-users. Providing 100x (two orders of 
magnitude) speedup would reduce the run time to 
slightly less than two days, making it possible to 
perform roughly 15 such runs per month. This could 
enable significantly more simulation per unit time. If the 
execution time could be reduced by one more factor of 
ten (three orders of magnitude, or 1,000x speedup), 
each run would require only about 4.4 hours.

This additional processing power comes with a high 
operating cost—a drastic increase in energy 
consumption per CPU. Common servers require about 
.25 kilowatt/hour to operate, and more than that to cool. 
Hundreds of thousands of processors, as some groups 
are considering, may require hundreds of megawatts of 
electrical and cooling power, hence the interest by some 
large companies in locating close to inexpensive 
hydroelectric power sources.

So the computing community faces both the limitations 
of existing processing technologies as demonstrated by 
Amdahl’s law, and the challenges associated with the 
dependence on advances solely based on current 
processor technologies. One way forward is to consider 
alternative processing technologies. 

Accelerated computing:  
Using specialized subsystems to 
achieve maximum performance

For the most part, processor designs have been die-
shrunk and clock-speed bumped over time. This does 
not necessarily involve altering the processor’s 
execution models or the way they are targeted with 
development tools. This means that on a given range of 
very similar hardware, programs will generally require a 
fixed number of clock cycles to execute, regardless of 
whether or not these are single- (serial) or multi-
threaded (parallel) programs. Since the processing is 
symmetric with respect to processor interchange, the 
processing time does not vary when one element is 
used over another. This symmetry implies a 
conservation of processing cycles for these 
architectures.

Conversely, accelerated computing may be thought of 
as a grouping of a number of different computational 

paradigms. As previously noted, accelerated computing 
has taken the form of vector computing, symmetric 
multiprocessor computing, and parallel cluster 
computing. The latter currently dominates the high-
performance computing (HPC) market.

These are not the only forms of accelerated computing 
in use. Specifically, dedicated circuits for offloading the 
processing of graphics calculations, I/O, and networking 
are common. These forms of accelerated computing are 
asymmetric, in that different programs run on different 
processors, and they talk via an application 
programming interface (API) to send messages and 
data to each other. These processors often do not have 
identical micro-architectures, and can not easily execute 
other processors’ program code or microcode without 
an emulator layer. They generally are not as tightly tied 
to processor architecture as vector processors.

The fundamental advantage of this approach is that 
one can design a device or processor for a specific task. 
These specialized processors may be able to perform 
complex calculations that would require many hundreds 
or thousands of clock cycles on a general-purpose 
processor. Examples of these would include the nVidia 
GeForce 8800 processor, which is designed specifically 
to perform graphics calculations, or the ClearSpeed 
CSX600 processor, which is specifically designed to 
perform many double-precision floating-point and 
integer calculations in parallel.

Accelerated computing has extended to include field 
programmable gate arrays (FPGAs). An FPGA is 
effectively a blank semiconductor upon which the 
engineer may build the computing circuit needed for a 
task. This dedicated computing circuit could be, but 
usually is not, a processor. It is not a written program per 
se, but is more closely aligned with the notion of a 
designed circuit that needs to interface with the 
software program.

In most cases, processing is asymmetric. This means that 
if an engineer can take advantage of the design, or craft a 
unique design using an FPGA, it is possible to drastically 
alter the number of required processing cycles.

The cost of acceleration:  
Evaluating the tradeoffs

Performance enhancements require altering software 
programs. Whether through more effective utilization of 
today’s x86-based processors or through the use of 
specialized accelerators, it cannot be avoided. The 
important questions to ask are, how much alteration will 
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the programs require, and will they be portable after 
alteration? Oddly enough, these questions are very 
similar to those asked when parallelization and SMP 
systems gained in popularity, and the answers are 
similar today.

End-users often hear that fast programs are not 
portable, and portable programs are not fast. The closer 
a program can get to the underlying architecture, the 
faster it can go. Conversely, the higher the level of 
abstraction, the heavier the performance penalty.

Programmers typically employ compilers to translate 
between higher-level languages and the physical 
system resources. These tools translate between 
individual lines of program code and machine 
instructions. When the programmer optimizes the code 
using the built-in optimization tools, the compiler tries to 
rearrange the computation or the instructions to better 
fit the computational model of the underlying 
architecture. Apart from various highly specialized 
cases, this optimization is not as efficient as one could 
realize at a lower level of code, with fewer abstractions 
in the way.

Parallel programs represent a compromise, and if they 
are written to a particular specification such as MPI, 
they may be quite portable. To make a program fast on 
a particular platform, it is critical that the programmer 
efficiently exploit the underlying physical processor 
resources. 

A program can now be effectively tied to a particular 
processor or machine micro-architecture, but the 
programmer will not produce as many useful modules 
per unit time due to the extra effort to optimize. The 
advantage is that individual modules that are produced 
can very efficiently utilize the underlying machine model. 

The AMD Core Math Library (ACML) is an excellent 
example. It represents hundreds of thousands of hand-
coded lines of low-level program code. ACML provides a 
standard API to the end-user for the ACML code. This 
way, users can take advantage of accelerated SIMD 
(miniature vector) code for specific calculations, without 
needing to know anything about the details of the 
calculation. Any user can leverage this acceleration in 
their program simply by linking to the ACML code, 
possibly achieving 85% or more resource utilization 
efficiency on the processors. It may not be “portable” 
outside of its micro-architectural model, but it is fast. 
This is an example of software-based acceleration that 
illustrates the tradeoff the end-user must consider.

Hardware acceleration provides another mechanism, 
and can be achieved using symmetric (SMP) or 
asymmetric (aSMP) multiprocessing. SMP includes 
clusters and traditional shared-memory machines, while 
aSMP includes specialized processor units and FPGAs.

Generally, SMP programs are easier for developers to 
produce than aSMP programs, and are typically more 
portable. The drawback is that they offer lower 
acceleration—typically less than 4x faster per core in 
the best-case scenarios.

aSMP programs are generally harder for programmers 
because they often require algorithmic shifts, program 
flow modification, and more involved test cases. The 
benefits include 4x to 10x faster acceleration, with some 
exceptional codes achieving 100x and better per node. 

When graphics processing units (GPUs) are used as 
the accelerator, the programmer will have to choose one 
of several competing execution models (GPGPU, Cuda, 
Cg, RapidMind, PeakStream) for coding, and these 
systems are not interchangeable.

Efficient resource utilization:  
Critical for acceleration

As noted earlier, parallel execution rapidly loses 
efficiency at high processor counts, so this mechanism 
has limited applicability for overall acceleration. The 
more efficiently underlying resources can be utilized, the 
better the performance. If a computing resource can 
provide a 10x speedup over current technology, but can 
only be used at 10% efficiency, it is not likely that any 
speedup will be realized.

Each processor may have a particular mix of 
instructions that it can execute per clock cycle. 
Software designed to take advantage of this mix, such 
as ACML, can achieve excellent overall efficiency. What 
aSMP offers over SMP is that the underlying physical 
model can be designed for efficient resource utilization 
of particular calculations. If the underlying processor 
can take long vectors and rapidly perform dot products, 
it is helpful to expose it to the programmer via an API.

This is the critical aspect of any accelerator technology. 
By increasing efficiency of resource utilization, more 
efficient processing can be enabled per unit time, not 
simply more cycles per unit time.

Accelerator technologies:  
Definitions and types of accelerators

Accelerators are processors or circuits specifically 
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designed to increase performance of particular 
calculations. They do this by exploiting efficient use of 
resources and employing implicitly parallel operations. 
Accelerators may be closely coupled to processors, as 
in the SIMD unit, the SSE, or Altivec system onboard 
many of today’s popular processors; more strongly 
coupled via HTX, using a bus such as PCIe or PCIx; or 
weakly coupled via Gigabit, USB2, or Firewire 
connections.

Accelerators are designed for particular calculations. For 
example, FPGAs are not processors or processing 
elements in a strict sense, but are rather circuits 
dedicated to execute a particular calculation.

Accelerators fall into several classes based on the focus 
of their processing and how much power they 
consume. 

 Technology Performance 
(GFLOP S/D)

Focus: Single, 
Double, 

Integer, strings

Power 
consumption 

per unit 
(watts)

CPU (dual 
core): General 

processor
10/10 S/D/I/s 90

Graphics 
processor 500/- S 200

Specialty 
processor 25/25 S/D/I 10

Gaming 
processor 220/12 S 50

FPGA 150/52 S/D/I/s 10

CPUs may have acceleration technology co-located 
on silicon. For example, integrating the SSE or Altivec 
SIMD units onto popular processors can increase the 
amount of data operated on per clock cycle. 
Aggregations of CPUs into an SMP or cluster can also 
be considered an accelerator of sorts, increasing the 
number of available clock cycles per unit of time. With 
the SIMD example, performance gains will be modest at 
best, typically improving by only 1.3x to 4x.

Graphics processors (GPU) are predomi- 
nately used for specific computations on graphical  
objects. Given screen refresh rates, scene size, and 
other constraints, these calculations need to be 
repeated with great speed. Using OpenGL and similar 
technologies, graphical objects are described in terms of 
mathematical constructs: vertices, surfaces, normals, 
and operations are performed upon these objects. The 
GPU performs the calculations by streaming the scene 
or traversing a scene graph, operating upon the data, 
and performing the necessary calculations. Recent 
GPUs use single-precision floating-point calculations, 

which are often highly parallel. With a sufficient number 
of pipelines for processing, current GPUs are 
theoretically able to achieve 500 GFLOPS in single-
precision calculations. Currently, they cannot easily 
perform double-precision calculations.

If a program has elements that can be described in a 
manner conducive to the shader language, Cg, CUDA, or 
any of the other emerging technologies, it may be able 
to tap into significant processing power. However, with 
this technology now in the formative stages, it is 
important to note that there may be a fairly wide gap 
between maximum theoretical performance and end-
user observed performance.

Specialty processors are designed for specific 
tasks. For example, ClearSpeed makes a specialty 
processor named the CSX600™, which has 96 
processing elements arrayed on a single silicon chip.

ClearSpeed CSX600™ processor  
block diagram
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Each processing element in the Poly Execution Unit 
contains a 32- and 64-bit floating-point multiplier, a  
32- and 64-bit floating-point adder, an integer arithmetic 
logic unit (ALU), a 16-bit MAC (multiply-and-accumulate), 
a 128-byte register file (16 double-precision or 32 single-
precision numbers), 6 kB of SRAM, and a high-speed I/O 
channel. The chip itself is capable of sustaining 25 
GFLOPS in DGEMM operations, which are generalized 
matrix-matrix products often used as the basis for 
higher-level linear algebra routines in LAPACK and its 
accelerated variants including ACML, Goto, and MKL. 
Since it has internal memory on each of its processing 
elements, it can move on the order of 96 GB/s from this 
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memory to its associated processor. It can access 
DDR2 ECC RAM at 3.2 GB/s and communicate with 
another chip via a duplex channel at 3.2 GB/s in each 
direction. 

Gaming processors such as the Cell-BE offer 
interesting possibilities for scientific computing. The 
system is designed with a central processing core 
based upon a low power/speed PowerPC processor 
and connects with eight “synergistic” processor 
elements (SPE). The design of this chip returns to the 
core principles of RISC architecture, in which the mantra 
was “simpler is better.” The PowerPC core handles 
many functions while the SPEs have vector registers as 
well as high-performance memory access to their local 
storage. The unit was designed to enable the SPEs to 
perform many single-precision calculations 
simultaneously. Each SPE is capable of 25.6 GFLOPS in 
single precision and 1.83 GFLOPS in double precision. 
With eight such units, the Cell-BE as a whole is capable3 
of about 205 GFLOPS in single precision and about 15 
GFLOPS in double precision. The memory bandwidth per 
SPE is about 26 GB/s. However, because there is only 
one DRAM controller, memory access is serialized for 
the chip, and is as fast as that of a single SPE. 

These processors are being manufactured with significant 
economies of scale, but not for accelerating high-
performance computing. For this market, chips that cost 
more than several hundred dollars would not be 
acceptable. This suggests that cost-effective acceleration 
may be possible with an appropriate board design.

Field programmable gate arrays (FPGAs) 
are literally collections of logic gates waiting for signal 
routing, connection, and other information. They enable 
the creation of a dedicated computational circuit that 
does not contain any extraneous or unused logic, and 
therefore tend to be self-contained. They may contain 
processor cores, and allow additional core logic or libraries 
of specific circuits to be used on them. There are several 
methods of building computational circuits, the highest-
performing of which would involve low-level logic design 
and modeling with VHSIC hardware description language 
(VHDL). Other lower-performing options involve using 
compiler systems, which attempt to convert various 
portions of programs into “virtual processor” logic circuitry. 
The problem with these virtual processors is that they are 
significantly less efficient than VHDL.

This Progeniq Bioboost accelerator card is used in some of the 
data collection for the quantitative portion of this report. Note 
that on the left of this PCI-compatible card, there is a power 
connector and a USB 2.0 port. Despite the low-performance 
interface (480 Mb/s), this card was able to provide about 
seven to 10x better performance than the pure software ver-
sion of the HMMER application (a popular tool for nucleic acid 
and protein sequence analysis).

Performance benefits and  
porting issues

With the accelerator technologies discussed, there is 
often a significant benefit to applying these tools to 
specific problems. Performance may vary significantly 
from roughly 5x better to well over 100x per acclerator.

It is important to note that the accelerator may only 
impact one aspect of a particular code. To estimate the 
potential impact, a typical scenario needs to be 
considered, its execution profiled, and a particular 
pattern sought. An execution profile indicating a 
significant amount of time spent in computationally 
expensive routines would offer an important clue as to 
whether or not acceleration is possible. 

With the HMMER program, for example, about 98 
percent of the execution time was spent in one function 
call during typical runs of HMM search. Even if all that 
processing time could be diminished to zero with an 
infinitely fast accelerator, the maximum speedup would 
be 50x. That is, S(∞) ≈ 1/s = 1/0.02, exactly analogous to 
Amdahl’s law.

This suggests that single-layer acceleration techniques 
may not be able to achieve 1000x and better 
performance. As with the parallel and vector systems, 
there are fundamental limits to the performance of a 
particular technology. 

Users can combine a variety of techniques and exploit 
multiple layers of acceleration: accelerating time-
expensive portions on each computing node, and using 
parallel programming and serial optimization methods to 
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distribute larger work to these accelerated nodes. 

Using software techniques on single processors, 
researchers were able to provide an about 1.6x to 2.5x 
speedup. Combining these with a rewriting4, 5, 6 of the 
serial and parallel portions of HMMER, they achieved 
significantly better performance. Using a single FPGA 
card (the Progeniq unit pictured on previous page) in 
conjunction with the MPI-HMMER yielded even better 
speedup.

HMM Model vs. Database

0 2015105

RRM vs. Swissprot

RRM vs. Uniref90

PF00244 vs. Swissprot

PF00244 vs. Uniref90

Serial Hmmer for 1 AMD

Speedups

Order of results

Optimized MPI with 1 AMD worker

Original FPGA Hmmer

Unoptimized MPI+FPGA with 1 FPGA worker

Optimized MPI+FPGA with 1 FPGA worker

Additional work will be reported with multiple FPGAs 
combined with serial and parallel optimization 
techniques. The initial data is quite encouraging, in that 
the parallel performance on sixteen CPUs is comparable 
to the performance of a single FPGA. With multiple 
FPGAs and larger work units, significantly better overall 
performance is expected. 

One serious performance point not normally discussed 
by vendors is the ability to fit an algorithm onto a 
particular accelerator. For the FPGA HMMER code noted 
above, it is restricted to 256 states in the HMM. To enable 
larger HMMs, a reduction in the number of HMM 
processing elements would be required to fit the larger 
elements onto the FPGA. This in turn would reduce the 
overall performance, as the FPGA is processing significant 
amounts of data in parallel. Programmers often have to 
choose between more PEs and larger models.

When FPGAs are used for floating-point work, careful 
consideration should be given to the trade-off of 
performance versus compatibility with IEEE754 
specifications, the widely used standard for floating-
point computation. Implementing full IEEE754 
specifications is expensive in terms of gates, and those 
functional units are rarely used in their entirety. FPGAs 
can be of enormous benefit when they can be fitted 
with large numbers of logic PEs per unit and kept busy. 
This offers the benefits of explicitly parallel operation 
with dedicated computational logic and an excellent 
performance combination, especially if users can relax 
the precision and IEEE754 requirements. MD-Grape 
systems are able to achieve in excess of 150 GFLOPS 
per FPGA and may have four to eight FPGAs per card.

While the performance of these units can be excellent, 
it requires changing programming paradigms. Users 
need to design a circuit for computing, not write 
software to compute. This is a significant difference, but 
when additional performance is required, the benefits 
are worth the effort.

In the case of the ClearSpeed unit, programming can be 
done at a low level via assembly, or at a higher level 
using their extended C compiler. This compiler provides 
an interface to the parallelism in a relatively simple 
manner, reminiscent of OpenMP. It introduces a new 
keyword — “poly” — that serves to define global 
variables, as well as PE indexing and other related 
functions. As with other programming, better 
performance will be obtained when carefully matching 
the expression of the problem to the underlying 
processor. This is usually most effectively done at a 
lower level to minimize the time-cost overhead of 
abstraction in higher-level languages.

GPU programming is also affected using “custom” 
languages such as Cg, RapidMind, PeakStream, and 
others. Some data types are well supported, such as 
integers. Some are partially supported, such as single-
precision, in that IEEE754 may not be fully implemented. 
And some data types are not supported in any 
meaningful manner, such as double-precision. This 
currently limits the effectiveness of these platforms for 
calculations on problems requiring double precision.

Cell-BE programming is inherently an exercise in parallel 
assembly code development, with the parallelism 
implemented in terms of message boxes/message passing 
constructs. Compilers are being developed by IBM and 
others to provide higher-level programming support.
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In every case, the best performance may be delivered 
by working at the lowest levels of programming. While 
making code easier to maintain, the higher levels of 
abstraction and language will not provide the maximum 
performance benefit. As with balancing performance 
against IEEE754 compliance, the programmer needs to 
balance development time and effort against expected 
payback.

None of these systems provides “drop-in,” or zero-effort, 
acceleration of software. All require some work to get 
applications onto them. There are currently few 
standards to work against, with some of the technology 
entirely proprietary and others quite open. 

Some ship with real applications or applications 
available. All have development tools which range from 
nominally priced to very expensive. 

Interface issues

In all cases, these accelerators exhibit massive internal 
bandwidths between their PEs. Unfortunately, they are 
not well matched with the rest of the system, as the 
ratio between the system communication bandwidth 
(PCIe, PCIx, or USB2) and the internal bandwidth is 
often 0.1 or less. This huge discrepancy drives the need 
to perform buffering operations as part of the solution 
porting/development process. Programmers may 
already be familiar with these techniques since single- 
and double-buffering are used to overlap 
communications and calculations in other scenarios, 
such as non-blocking MPI programming. 

In double-buffering, DMA transfers are enabled to fill or 
empty one buffer for a PE while the other buffer is being 
processed by the PE. This leverages asynchronous 
programming technique and requires to the ability to 
inspect locks and semaphores. 

While double-buffering may provide some relief and 
data access impedance matching, accelerators will 
likely remain bandwidth-constrained for some time to 
come. Existing PCIx buses cannot sustain more than 
one GB/s. And PCIe buses are typically limited to x16 
slots, which provide eight GB/s in aggregate or four GB/s 
in each direction. Such buses limit data transfer rates for 
accelerators, which can individually consume more than 
three GB/s and six GB/s in pairs. Moreover, memory 
bandwidth on the host machine is generally insufficient 
for an accelerator to process data at its maximum 
potential capacity. While a gigabyte or two of high-
performance onboard memory would be helpful, data 
motion within the system requires a high-speed, tightly 

coupled connection between the memory and I/O 
systems, the processors, and the accelerator.

Lower-speed connections are possible and offer 
acceleration that may meet the needs of some end-
users, in which case these systems may be designed 
without the more expensive high-speed circuitry. 

Summary

Accelerators could significantly benefit high-
performance computing. When combined with systems 
that provide data motion rates sufficient to keep an 
accelerator busy, they may provide acceleration of an 
order of magnitude or more per node, at costs 
comparable to or less than several nodes of a standard 
Linux cluster. Even accelerators coupled via lower-
performance buses can provide significant acceleration 
and performance.

More important is the possibility of coupling multiple 
layers of acceleration and getting benefits from each. 
SIMD at the host CPU, accelerators coupled to the host 
CPU, and parallelization may enable multiple orders of 
magnitude of performance gain for a cost far below that 
of a traditional parallel system and code development 
effort. 

The need for heterogeneous computing has arrived. It is 
expected that lowering barriers and making 
technologies widely available at low cost is a good way 
to increase the market, especially when rapid data 
insights are imperative. And over the next several years, 
the market will select the winning technologies, which 
will likely be easy to program, easy to use, and relatively 
low cost.
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