
The Need for Acceleration Technologies to
Achieve Cost-effective Supercomputing Performance
for Advanced Applications
Written by: Joe Landman

amd White Paper

Historical context:
Bumping into the performance ceiling

For some time, particular types of calculations have
dominated scientific studies. They include the
performance of repetitive tasks, usually with a strong
emphasis on double-precision floating-point data types,
while operating on increasingly larger problem sets.

Savvy users worked with computer vendors to extend
the classical von Neumann architecture to include
support for faster processing of these specific
calculations. Vector and parallel processing originated
from these designs, and later on, more generalized
distributed processing. Vector processing enables
multiple operations to occur simultaneously per clock
cycle. It effectively provides a clock-cycle multiplicative
effect, performing much more work per clock cycle
than non-vector operations.

Vector processors worked on architectures that
enabled high sustained-memory bandwidth and a
reasonable ratio of floating point operations to memory
fetch-and-store operations. Writing the most time-
consuming algorithms in a vector manner achieved
exceptional performance on these early machines.
Typically, one spoke in terms of average vector length
and the speedup they achieved over “ordinary”
processing. For example, a vector length of 64 would
usually result in a multiplicative factor of about 64x
over non-vector code in various cases. Programming
was not that difficult, as existing tools were quite good
for this. The downside to such architectures was the
cost associated with their acquisition and ongoing
operation and maintenance; they were not easy to
build, and the resulting machines cost millions of dollars
for small configurations.

1

Overview

Supercomputing has become an essential tool for many users, including those working in the scientific,
engineering, biomedical, and financial disciplines. Although processing capabilities continue to advance, in many
cases demand is increasing at an even faster rate. Simulation and analysis problems — once intractable due to
computational limitations — have become possible.

Supercomputing technology has evolved from highly specialized and custom circuitry to commodity circuits based
largely upon x86 instruction-compatible processing hardware. Leveraging economies of scale lowers costs of
production, amortizes research and development, and simplifies software development, as more programmers are
familiar with the technologies. Indeed, many supercomputers listed on the TOP500 supercomputers site (http://
www.top500.org) are aggregations of commodity processing units and parts. Programs may be easily ported from
desktop Linux® machines — which are popular platforms in development and scientific and engineering — to Linux-
based supercomputing systems.

Aggregating large numbers of processors into huge clusters and cluster-like machines, while useful, has a variety of
limitations. Overcoming these limitations in order to extract the maximum performance from these systems requires
extensive application of acceleration technologies. In order to understand the limitations and how acceleration
technology addresses them, this paper will examine why clusters are built, and a brief history of supercomputing
technology will provide context for the need for acceleration technologies.

�

AMD White Paper: Accelerated Computing

Parallel processing on “supermicros” in the 1990s was
based on a number of individual processors that shared
access to memory. These processors were not as
robust as vector processors on vectorized algorithms,
but they provided much faster processing than the
non-vector portion of the application codes. While the
code may not have been vectorized, the programmers
used shared memory parallel (SMP) techniques to
accelerate as much of the program as possible. For a
32-CPU system, speedup of nearly 32x was possible
for well-constructed programs. Superlinear speedup,
where a program achieves speeds more than N-times
faster on N processors, was also observed. This
typically occurs when the program working set (the
memory used) per processor fits within the processor
cache. Vendors noted this, and increased their
processor caches to 8 MB and more in the late 1990s.

As machines grew larger, the inefficiencies inherent in
this approach thwarted efforts to run huge SMP
programs. Distributed memory programming (DMP) — as
seen in MPI, PVM, and other implementations — gained
favor, laying the foundation for the cluster.

The impact of specialized processing:
Vector processing

All of these techniques attempted to provide something
akin to a simple execution model: if a program required
Nprogram processor clock cycles to complete, and the
processor had a clock cycle as measured in
nanoseconds of τcycle, then the total execution time is
equal to τcompletion.

τcompletion = Nprogram ˙ τcycle

This assumes that each instruction takes the same
length of time to execute. Though this is not generally
the case, it could serve as a rough approximation for
these machines.

A vector program would have a vector portion and a
non-vector portion, where Nvector is the number of
cycles executed on the vector processor, the τnon-vector-

cycle is the clock cycle of the scalar processor, the
τvector-cycle is the clock cycle of the vector processor,
and the A is average vector length (i.e., how much
additional work can be done on average over the whole
of the program, in the vector processor).

So if there were an average vector length of 64 and a
vector clock cycle close to the non-vector clock cycle, it
would be possible to get excellent performance (lower

τTotal value) by moving as much code as possible into
the vector section of the program.

Put another way, the number of clock cycles required
for program execution remained “constant,” but how
they are divided among the functional units, and how
efficiently they could use all the functional units’
resources, governed the performance achieved. The
more functional resources leveraged per unit time, the
higher the efficiency, and therefore the higher the
apparent speedup over serial code.

The impact of specialized processing:
Parallel Processing

Since computer design has largely followed the von
Neumann architecture, parallel processing yielded a
remarkably similar set of equations. Gene Amdahl noted
this when he made the case for the law that now bears
his name. The basic concept is that total program time
is the sum of the time to execute the serial and parallel
components:

τprogram = τserial + τparallel

For a fixed CPU clock cycle of length τcpu, and again,
assuming the instructions all take the same amount
of time1, we can write the execution time in terms of
numbers of instructions executed.

Nprogram = Nserial + Nparallel

Section 1

Section 2

Section 3

Serial program

Time

Time

Section 4

Section 1

Section 2

Section 3

S
er

ia
l s

ta
rt

up

S
er

ia
l s

hu
td

ow
n

Section 4

Parallelization

The number of instructions executed will be constant,
no matter how they are subdivided among proces-
sors. In this representation, the number of instruc-
tions executed in the parallel section Nparallel may be
represented by A(Ncpu) Nparallel-per-cpu, where Ncpu is the
number of CPUs running on the parallel program, and
A(Ncpu) is the parallel speedup—basically the ratio of
the performance on a single CPU to the Ncpu CPUs. In
a typical analysis, this is divided by τprogram and called
the ratio of τserial to τprogram. “s” is the serial fraction of
the program and the ratio of τparallel to τprogram , or “p,” is
the parallel fraction of the program. The equation reads:

1 = s + p
or

1 - p = s

The green represents the parallel portion and red
represents the serial portion in the figure.

τtotal = (Nprogram – Nvector) ˙ τnon-vector-cycle + Nvector ˙ τvector-cycle_____________________
						 A

�

AMD White Paper: Accelerated Computing

The parallel fraction “p” means that each Ncpu executes
1/Ncpu of the parallel cycles of the program. This is
analogous to the vector processor’s “A” or average
vector length.

This immediately gives rise to Amdahl’s law that predicts
the best-case speedup S(Ncpu) (i.e., the ratio of the
execution time of the serial and parallel portions of the

program) as:

S (Ncpu) = 1

Ncpu
(1 – p) +

p

As increasingly large clusters are used, the Ncpu grows
and the ratio p/Ncpu becomes infinitesimal. This results
in the maximum acceleration S(Ncpu) that can be
expected, governed entirely by the serial or non-vector
fraction of the program.

S(∞) ≈ 1/s

That is, regardless of whether a system uses a shared
memory parallel, distributed memory parallel, or vector
program, there are fundamental performance limits as
the number of CPUs or vector elements increases.

For most programs, S(Ncpu) is less than Ncpu. This is
called the sub-linear region. So for a parallel program
using 1,000 CPUs, operating in a 99% parallel manner
(p=0.99), the program will achieve a speedup of less
than 100. This means that less than 100/1,000 or 1/10th
of the resources are effectively being used. Increasing
the number of processors will not increase the speedup
for this program. In other words, simply throwing more
processors at the problem will not solve it any faster.

Amdahl’s Law

Speedup as a function of parallel fraction (p) and
number of CPUs.

Super-linear region

p=0.5

p=0.75

p=0.875

p=0.9

p=0.99

p=0.999

p=0.9999

linear

1,000

100

10

1
1
Number of CPUs

S
pe

ed
up

 S
(N

)

10 100 1,000

Sub-linear region

The efficiency ε(Ncpu) of this process may be defined
as:

 ε(Ncpu) = S(Ncpu) / Ncpu

This efficiency is always less than one for normal (i.e.,
non-superlinear) programs. It is also dominated by the
serial fraction at high CPU counts. Not much can be
done to improve upon this, apart from minimizing serial
work in the program or hiding it in a parallel thread so
that it is non-blocking in relation to the parallel program.

Efficiency

Efficiency as a function of number of CPUs
at a fixed parallel fraction.

p=0.9

p=0.99

p=0.999

p=0.9999

1.2

0.8

0.4

0
1
Number of CPUs

ε
(N

)
10 100 1,000

p=0.5

p=0.75

p=0.875

Clusters offer a low-cost mechanism that provides this
increase in available processing cycles. As a
consequence, the aggregate amount of processing
cycles is quite large — though, as Amdahl’s law shows,
there are fundamental performance limits in this
approach. Clusters, like parallel and vector machines,
provide more processor cycles per unit of time than a
single processor. In this sense, these systems are
effectively cycle multipliers, providing Ncpu cycles or
Avector-length cycles per unit processor clock cycle.

The impact of underlying processor
technology on performance

In addition, programs are fundamentally bound by the
performance of the underlying processor technology.
This performance and power curve has closely followed
Moore’s Law (which states that general processor
performance will double every eighteen months) over
the past three decades.

�

AMD White Paper: Accelerated Computing

Scaled processor power as a function of thime assuming
Moore’s lawholds..

1,000

10,000

100

10

1
0 5 10 15
Time (in years)

Time (years) P(t)
P(t0)

Po
w

er
 r

at
io

20

If data growth rates are not increasing faster than the
underlying processor technology, this is not a problem.
However, for large groups of researchers, engineers and
scientists whose data sets are growing at exponential
rates, this is a major challenge.

Growth of (Base pairs, Moore’s Law)

60B

80B

40B

20B

0
0 5 10 15 20
Elapsed time in years

Moore’s Law

Base Pairs

25

For example, consider data growth at Genbank, the
National Institutes of Health’s genetic sequence
database. The data, found at ftp://ftp.ncbi.nih.gov/
genbank/gbrel.txt, has the classic hockey stick shape
indicative of exponential growth. It is instructive to
normalize Moore’s law against the base pair data and
compare how processing power has grown in this time.

Some end-users have approached this challenge by
waiting for the underlying technology to generate an
order of magnitude or more improvement in performance
for general-purpose processors. Hypothetically, the user
can then buy more performance for less money,
assuming power, space, cooling or other considerations
are not limiting factors. Unfortunately, this strategy has
significant shortcomings including:

> �The lost value caused by delays in time-to-insight that
could be captured by performing analysis sooner
rather than later.

> �The immediate opportunity cost associated with
performing more complex calculations faster. In
commercial applications, like financial analysis,
underperforming platforms carry economic penalties.

> �The underlying assumption that the growth of raw data
requiring analysis will return to a more manageable level,
allowing processing power to catch up.

Finally, this approach is based on an implied
assumption that performance improvements in the
underlying processor technology will continue
indefinitely. This may unfairly discount future challenges
associated with the process technologies, device
physics, thermodynamics, and fundamental physical
limitations of new processors.

A current example: Genomic research

Using genomic data as an example, and postulating that
computational analytical needs (or computational
intensity) scales at least as fast as the rate of data
growth, the best-case scenario would be that
computational intensity is proportional to volume of
data. In that case, underlying general-purpose
processor technologies would provide the computing
power scaling needed for current and future analysis.

Growth of Bio-IT Computational
Instensity and Computational Power

45,000

60,000

30,000

15,000

0
1980 1985 1990 1995 2000

A
rb

itr
ar

y
un

its
 (

no
rm

al
iz

ed
 t

o
19

81
=

1)

Computational power available

Computational
intensity

Scaling
needed to
close gap

2005

However, this is not the case. Data is growing
exponentially faster than computing power,
overwhelming the ability of researchers to model,
simulate, and analyze. The above graph plots data
volume and the computational power available to
process it as a function of time. The gap represents a
large and rapidly growing problem for life-science
researchers. Similar data from other fields shows that
this trend is not limited to life sciences.

The best acceleration or speedup with general-purpose
processors will be in solutions that emphasize parallel
execution. That would require a program that is either
exceptionally well tuned for parallel operation, or parallel

�

AMD White Paper: Accelerated Computing

by design, such as a Monte Carlo code.

Order-of-magnitude changes in run times are
reasonable goals. If a computation would ordinarily
require six months of processing time, an order of
magnitude speedup would reduce the run time to about
18.3 days. Unfortunately, this is still not fast enough to
satisfy most end-users. Providing 100x (two orders of
magnitude) speedup would reduce the run time to
slightly less than two days, making it possible to
perform roughly 15 such runs per month. This could
enable significantly more simulation per unit time. If the
execution time could be reduced by one more factor of
ten (three orders of magnitude, or 1,000x speedup),
each run would require only about 4.4 hours.

This additional processing power comes with a high
operating cost—a drastic increase in energy
consumption per CPU. Common servers require about
.25 kilowatt/hour to operate, and more than that to cool.
Hundreds of thousands of processors, as some groups
are considering, may require hundreds of megawatts of
electrical and cooling power, hence the interest by some
large companies in locating close to inexpensive
hydroelectric power sources.

So the computing community faces both the limitations
of existing processing technologies as demonstrated by
Amdahl’s law, and the challenges associated with the
dependence on advances solely based on current
processor technologies. One way forward is to consider
alternative processing technologies.

Accelerated computing:
Using specialized subsystems to
achieve maximum performance

For the most part, processor designs have been die-
shrunk and clock-speed bumped over time. This does
not necessarily involve altering the processor’s
execution models or the way they are targeted with
development tools. This means that on a given range of
very similar hardware, programs will generally require a
fixed number of clock cycles to execute, regardless of
whether or not these are single- (serial) or multi-
threaded (parallel) programs. Since the processing is
symmetric with respect to processor interchange, the
processing time does not vary when one element is
used over another. This symmetry implies a
conservation of processing cycles for these
architectures.

Conversely, accelerated computing may be thought of
as a grouping of a number of different computational

paradigms. As previously noted, accelerated computing
has taken the form of vector computing, symmetric
multiprocessor computing, and parallel cluster
computing. The latter currently dominates the high-
performance computing (HPC) market.

These are not the only forms of accelerated computing
in use. Specifically, dedicated circuits for offloading the
processing of graphics calculations, I/O, and networking
are common. These forms of accelerated computing are
asymmetric, in that different programs run on different
processors, and they talk via an application
programming interface (API) to send messages and
data to each other. These processors often do not have
identical micro-architectures, and can not easily execute
other processors’ program code or microcode without
an emulator layer. They generally are not as tightly tied
to processor architecture as vector processors.

The fundamental advantage of this approach is that
one can design a device or processor for a specific task.
These specialized processors may be able to perform
complex calculations that would require many hundreds
or thousands of clock cycles on a general-purpose
processor. Examples of these would include the nVidia
GeForce 8800 processor, which is designed specifically
to perform graphics calculations, or the ClearSpeed
CSX600 processor, which is specifically designed to
perform many double-precision floating-point and
integer calculations in parallel.

Accelerated computing has extended to include field
programmable gate arrays (FPGAs). An FPGA is
effectively a blank semiconductor upon which the
engineer may build the computing circuit needed for a
task. This dedicated computing circuit could be, but
usually is not, a processor. It is not a written program per
se, but is more closely aligned with the notion of a
designed circuit that needs to interface with the
software program.

In most cases, processing is asymmetric. This means that
if an engineer can take advantage of the design, or craft a
unique design using an FPGA, it is possible to drastically
alter the number of required processing cycles.

The cost of acceleration:
Evaluating the tradeoffs

Performance enhancements require altering software
programs. Whether through more effective utilization of
today’s x86-based processors or through the use of
specialized accelerators, it cannot be avoided. The
important questions to ask are, how much alteration will

�

AMD White Paper: Accelerated Computing

the programs require, and will they be portable after
alteration? Oddly enough, these questions are very
similar to those asked when parallelization and SMP
systems gained in popularity, and the answers are
similar today.

End-users often hear that fast programs are not
portable, and portable programs are not fast. The closer
a program can get to the underlying architecture, the
faster it can go. Conversely, the higher the level of
abstraction, the heavier the performance penalty.

Programmers typically employ compilers to translate
between higher-level languages and the physical
system resources. These tools translate between
individual lines of program code and machine
instructions. When the programmer optimizes the code
using the built-in optimization tools, the compiler tries to
rearrange the computation or the instructions to better
fit the computational model of the underlying
architecture. Apart from various highly specialized
cases, this optimization is not as efficient as one could
realize at a lower level of code, with fewer abstractions
in the way.

Parallel programs represent a compromise, and if they
are written to a particular specification such as MPI,
they may be quite portable. To make a program fast on
a particular platform, it is critical that the programmer
efficiently exploit the underlying physical processor
resources.

A program can now be effectively tied to a particular
processor or machine micro-architecture, but the
programmer will not produce as many useful modules
per unit time due to the extra effort to optimize. The
advantage is that individual modules that are produced
can very efficiently utilize the underlying machine model.

The AMD Core Math Library (ACML) is an excellent
example. It represents hundreds of thousands of hand-
coded lines of low-level program code. ACML provides a
standard API to the end-user for the ACML code. This
way, users can take advantage of accelerated SIMD
(miniature vector) code for specific calculations, without
needing to know anything about the details of the
calculation. Any user can leverage this acceleration in
their program simply by linking to the ACML code,
possibly achieving 85% or more resource utilization
efficiency on the processors. It may not be “portable”
outside of its micro-architectural model, but it is fast.
This is an example of software-based acceleration that
illustrates the tradeoff the end-user must consider.

Hardware acceleration provides another mechanism,
and can be achieved using symmetric (SMP) or
asymmetric (aSMP) multiprocessing. SMP includes
clusters and traditional shared-memory machines, while
aSMP includes specialized processor units and FPGAs.

Generally, SMP programs are easier for developers to
produce than aSMP programs, and are typically more
portable. The drawback is that they offer lower
acceleration—typically less than 4x faster per core in
the best-case scenarios.

aSMP programs are generally harder for programmers
because they often require algorithmic shifts, program
flow modification, and more involved test cases. The
benefits include 4x to 10x faster acceleration, with some
exceptional codes achieving 100x and better per node.

When graphics processing units (GPUs) are used as
the accelerator, the programmer will have to choose one
of several competing execution models (GPGPU, Cuda,
Cg, RapidMind, PeakStream) for coding, and these
systems are not interchangeable.

Efficient resource utilization:
Critical for acceleration

As noted earlier, parallel execution rapidly loses
efficiency at high processor counts, so this mechanism
has limited applicability for overall acceleration. The
more efficiently underlying resources can be utilized, the
better the performance. If a computing resource can
provide a 10x speedup over current technology, but can
only be used at 10% efficiency, it is not likely that any
speedup will be realized.

Each processor may have a particular mix of
instructions that it can execute per clock cycle.
Software designed to take advantage of this mix, such
as ACML, can achieve excellent overall efficiency. What
aSMP offers over SMP is that the underlying physical
model can be designed for efficient resource utilization
of particular calculations. If the underlying processor
can take long vectors and rapidly perform dot products,
it is helpful to expose it to the programmer via an API.

This is the critical aspect of any accelerator technology.
By increasing efficiency of resource utilization, more
efficient processing can be enabled per unit time, not
simply more cycles per unit time.

Accelerator technologies:
Definitions and types of accelerators

Accelerators are processors or circuits specifically

�

AMD White Paper: Accelerated Computing

designed to increase performance of particular
calculations. They do this by exploiting efficient use of
resources and employing implicitly parallel operations.
Accelerators may be closely coupled to processors, as
in the SIMD unit, the SSE, or Altivec system onboard
many of today’s popular processors; more strongly
coupled via HTX, using a bus such as PCIe or PCIx; or
weakly coupled via Gigabit, USB2, or Firewire
connections.

Accelerators are designed for particular calculations. For
example, FPGAs are not processors or processing
elements in a strict sense, but are rather circuits
dedicated to execute a particular calculation.

Accelerators fall into several classes based on the focus
of their processing and how much power they
consume.

 Technology Performance
(GFLOP S/D)

Focus: Single,
Double,

Integer, strings

Power
consumption

per unit
(watts)

CPU (dual
core): General

processor
10/10 S/D/I/s 90

Graphics
processor 500/- S 200

Specialty
processor 25/25 S/D/I 10

Gaming
processor 220/12 S 50

FPGA 150/52 S/D/I/s 10

CPUs may have acceleration technology co-located
on silicon. For example, integrating the SSE or Altivec
SIMD units onto popular processors can increase the
amount of data operated on per clock cycle.
Aggregations of CPUs into an SMP or cluster can also
be considered an accelerator of sorts, increasing the
number of available clock cycles per unit of time. With
the SIMD example, performance gains will be modest at
best, typically improving by only 1.3x to 4x.

Graphics processors (GPU) are predomi-
nately used for specific computations on graphical
objects. Given screen refresh rates, scene size, and
other constraints, these calculations need to be
repeated with great speed. Using OpenGL and similar
technologies, graphical objects are described in terms of
mathematical constructs: vertices, surfaces, normals,
and operations are performed upon these objects. The
GPU performs the calculations by streaming the scene
or traversing a scene graph, operating upon the data,
and performing the necessary calculations. Recent
GPUs use single-precision floating-point calculations,

which are often highly parallel. With a sufficient number
of pipelines for processing, current GPUs are
theoretically able to achieve 500 GFLOPS in single-
precision calculations. Currently, they cannot easily
perform double-precision calculations.

If a program has elements that can be described in a
manner conducive to the shader language, Cg, CUDA, or
any of the other emerging technologies, it may be able
to tap into significant processing power. However, with
this technology now in the formative stages, it is
important to note that there may be a fairly wide gap
between maximum theoretical performance and end-
user observed performance.

Specialty processors are designed for specific
tasks. For example, ClearSpeed makes a specialty
processor named the CSX600™, which has 96
processing elements arrayed on a single silicon chip.

ClearSpeed CSX600™ processor
block diagram

System network

Host core
(mono controller)

Poly controller

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Poly execution unit

Peripheral network

C
on

tr
ol

/d
eb

ug

D
at

a
ca

ch
e

Instruction cache

System network

Each processing element in the Poly Execution Unit
contains a 32- and 64-bit floating-point multiplier, a
32- and 64-bit floating-point adder, an integer arithmetic
logic unit (ALU), a 16-bit MAC (multiply-and-accumulate),
a 128-byte register file (16 double-precision or 32 single-
precision numbers), 6 kB of SRAM, and a high-speed I/O
channel. The chip itself is capable of sustaining 25
GFLOPS in DGEMM operations, which are generalized
matrix-matrix products often used as the basis for
higher-level linear algebra routines in LAPACK and its
accelerated variants including ACML, Goto, and MKL.
Since it has internal memory on each of its processing
elements, it can move on the order of 96 GB/s from this

�

AMD White Paper: Accelerated Computing

memory to its associated processor. It can access
DDR2 ECC RAM at 3.2 GB/s and communicate with
another chip via a duplex channel at 3.2 GB/s in each
direction.

Gaming processors such as the Cell-BE offer
interesting possibilities for scientific computing. The
system is designed with a central processing core
based upon a low power/speed PowerPC processor
and connects with eight “synergistic” processor
elements (SPE). The design of this chip returns to the
core principles of RISC architecture, in which the mantra
was “simpler is better.” The PowerPC core handles
many functions while the SPEs have vector registers as
well as high-performance memory access to their local
storage. The unit was designed to enable the SPEs to
perform many single-precision calculations
simultaneously. Each SPE is capable of 25.6 GFLOPS in
single precision and 1.83 GFLOPS in double precision.
With eight such units, the Cell-BE as a whole is capable3
of about 205 GFLOPS in single precision and about 15
GFLOPS in double precision. The memory bandwidth per
SPE is about 26 GB/s. However, because there is only
one DRAM controller, memory access is serialized for
the chip, and is as fast as that of a single SPE.

These processors are being manufactured with significant
economies of scale, but not for accelerating high-
performance computing. For this market, chips that cost
more than several hundred dollars would not be
acceptable. This suggests that cost-effective acceleration
may be possible with an appropriate board design.

Field programmable gate arrays (FPGAs)
are literally collections of logic gates waiting for signal
routing, connection, and other information. They enable
the creation of a dedicated computational circuit that
does not contain any extraneous or unused logic, and
therefore tend to be self-contained. They may contain
processor cores, and allow additional core logic or libraries
of specific circuits to be used on them. There are several
methods of building computational circuits, the highest-
performing of which would involve low-level logic design
and modeling with VHSIC hardware description language
(VHDL). Other lower-performing options involve using
compiler systems, which attempt to convert various
portions of programs into “virtual processor” logic circuitry.
The problem with these virtual processors is that they are
significantly less efficient than VHDL.

This Progeniq Bioboost accelerator card is used in some of the
data collection for the quantitative portion of this report. Note
that on the left of this PCI-compatible card, there is a power
connector and a USB 2.0 port. Despite the low-performance
interface (480 Mb/s), this card was able to provide about
seven to 10x better performance than the pure software ver-
sion of the HMMER application (a popular tool for nucleic acid
and protein sequence analysis).

Performance benefits and
porting issues

With the accelerator technologies discussed, there is
often a significant benefit to applying these tools to
specific problems. Performance may vary significantly
from roughly 5x better to well over 100x per acclerator.

It is important to note that the accelerator may only
impact one aspect of a particular code. To estimate the
potential impact, a typical scenario needs to be
considered, its execution profiled, and a particular
pattern sought. An execution profile indicating a
significant amount of time spent in computationally
expensive routines would offer an important clue as to
whether or not acceleration is possible.

With the HMMER program, for example, about 98
percent of the execution time was spent in one function
call during typical runs of HMM search. Even if all that
processing time could be diminished to zero with an
infinitely fast accelerator, the maximum speedup would
be 50x. That is, S(∞) ≈ 1/s = 1/0.02, exactly analogous to
Amdahl’s law.

This suggests that single-layer acceleration techniques
may not be able to achieve 1000x and better
performance. As with the parallel and vector systems,
there are fundamental limits to the performance of a
particular technology.

Users can combine a variety of techniques and exploit
multiple layers of acceleration: accelerating time-
expensive portions on each computing node, and using
parallel programming and serial optimization methods to

�

AMD White Paper: Accelerated Computing

distribute larger work to these accelerated nodes.

Using software techniques on single processors,
researchers were able to provide an about 1.6x to 2.5x
speedup. Combining these with a rewriting4, 5, 6 of the
serial and parallel portions of HMMER, they achieved
significantly better performance. Using a single FPGA
card (the Progeniq unit pictured on previous page) in
conjunction with the MPI-HMMER yielded even better
speedup.

HMM Model vs. Database

0 2015105

RRM vs. Swissprot

RRM vs. Uniref90

PF00244 vs. Swissprot

PF00244 vs. Uniref90

Serial Hmmer for 1 AMD

Speedups

Order of results

Optimized MPI with 1 AMD worker

Original FPGA Hmmer

Unoptimized MPI+FPGA with 1 FPGA worker

Optimized MPI+FPGA with 1 FPGA worker

Additional work will be reported with multiple FPGAs
combined with serial and parallel optimization
techniques. The initial data is quite encouraging, in that
the parallel performance on sixteen CPUs is comparable
to the performance of a single FPGA. With multiple
FPGAs and larger work units, significantly better overall
performance is expected.

One serious performance point not normally discussed
by vendors is the ability to fit an algorithm onto a
particular accelerator. For the FPGA HMMER code noted
above, it is restricted to 256 states in the HMM. To enable
larger HMMs, a reduction in the number of HMM
processing elements would be required to fit the larger
elements onto the FPGA. This in turn would reduce the
overall performance, as the FPGA is processing significant
amounts of data in parallel. Programmers often have to
choose between more PEs and larger models.

When FPGAs are used for floating-point work, careful
consideration should be given to the trade-off of
performance versus compatibility with IEEE754
specifications, the widely used standard for floating-
point computation. Implementing full IEEE754
specifications is expensive in terms of gates, and those
functional units are rarely used in their entirety. FPGAs
can be of enormous benefit when they can be fitted
with large numbers of logic PEs per unit and kept busy.
This offers the benefits of explicitly parallel operation
with dedicated computational logic and an excellent
performance combination, especially if users can relax
the precision and IEEE754 requirements. MD-Grape
systems are able to achieve in excess of 150 GFLOPS
per FPGA and may have four to eight FPGAs per card.

While the performance of these units can be excellent,
it requires changing programming paradigms. Users
need to design a circuit for computing, not write
software to compute. This is a significant difference, but
when additional performance is required, the benefits
are worth the effort.

In the case of the ClearSpeed unit, programming can be
done at a low level via assembly, or at a higher level
using their extended C compiler. This compiler provides
an interface to the parallelism in a relatively simple
manner, reminiscent of OpenMP. It introduces a new
keyword — “poly” — that serves to define global
variables, as well as PE indexing and other related
functions. As with other programming, better
performance will be obtained when carefully matching
the expression of the problem to the underlying
processor. This is usually most effectively done at a
lower level to minimize the time-cost overhead of
abstraction in higher-level languages.

GPU programming is also affected using “custom”
languages such as Cg, RapidMind, PeakStream, and
others. Some data types are well supported, such as
integers. Some are partially supported, such as single-
precision, in that IEEE754 may not be fully implemented.
And some data types are not supported in any
meaningful manner, such as double-precision. This
currently limits the effectiveness of these platforms for
calculations on problems requiring double precision.

Cell-BE programming is inherently an exercise in parallel
assembly code development, with the parallelism
implemented in terms of message boxes/message passing
constructs. Compilers are being developed by IBM and
others to provide higher-level programming support.

10

AMD White Paper: Accelerated Computing

In every case, the best performance may be delivered
by working at the lowest levels of programming. While
making code easier to maintain, the higher levels of
abstraction and language will not provide the maximum
performance benefit. As with balancing performance
against IEEE754 compliance, the programmer needs to
balance development time and effort against expected
payback.

None of these systems provides “drop-in,” or zero-effort,
acceleration of software. All require some work to get
applications onto them. There are currently few
standards to work against, with some of the technology
entirely proprietary and others quite open.

Some ship with real applications or applications
available. All have development tools which range from
nominally priced to very expensive.

Interface issues

In all cases, these accelerators exhibit massive internal
bandwidths between their PEs. Unfortunately, they are
not well matched with the rest of the system, as the
ratio between the system communication bandwidth
(PCIe, PCIx, or USB2) and the internal bandwidth is
often 0.1 or less. This huge discrepancy drives the need
to perform buffering operations as part of the solution
porting/development process. Programmers may
already be familiar with these techniques since single-
and double-buffering are used to overlap
communications and calculations in other scenarios,
such as non-blocking MPI programming.

In double-buffering, DMA transfers are enabled to fill or
empty one buffer for a PE while the other buffer is being
processed by the PE. This leverages asynchronous
programming technique and requires to the ability to
inspect locks and semaphores.

While double-buffering may provide some relief and
data access impedance matching, accelerators will
likely remain bandwidth-constrained for some time to
come. Existing PCIx buses cannot sustain more than
one GB/s. And PCIe buses are typically limited to x16
slots, which provide eight GB/s in aggregate or four GB/s
in each direction. Such buses limit data transfer rates for
accelerators, which can individually consume more than
three GB/s and six GB/s in pairs. Moreover, memory
bandwidth on the host machine is generally insufficient
for an accelerator to process data at its maximum
potential capacity. While a gigabyte or two of high-
performance onboard memory would be helpful, data
motion within the system requires a high-speed, tightly

coupled connection between the memory and I/O
systems, the processors, and the accelerator.

Lower-speed connections are possible and offer
acceleration that may meet the needs of some end-
users, in which case these systems may be designed
without the more expensive high-speed circuitry.

Summary

Accelerators could significantly benefit high-
performance computing. When combined with systems
that provide data motion rates sufficient to keep an
accelerator busy, they may provide acceleration of an
order of magnitude or more per node, at costs
comparable to or less than several nodes of a standard
Linux cluster. Even accelerators coupled via lower-
performance buses can provide significant acceleration
and performance.

More important is the possibility of coupling multiple
layers of acceleration and getting benefits from each.
SIMD at the host CPU, accelerators coupled to the host
CPU, and parallelization may enable multiple orders of
magnitude of performance gain for a cost far below that
of a traditional parallel system and code development
effort.

The need for heterogeneous computing has arrived. It is
expected that lowering barriers and making
technologies widely available at low cost is a good way
to increase the market, especially when rapid data
insights are imperative. And over the next several years,
the market will select the winning technologies, which
will likely be easy to program, easy to use, and relatively
low cost.

11

AMD White Paper: Accelerated Computing

Joseph Landman Ph.D., is Founder and CEO of Scalable Informatics LLC, a Canton, Michigan based, privately owned
high performance computing and storage solutions company. He has been a user of high performance computing
systems and tools since 1986, and working on the vendor side since 1995. Previously Dr. Landman has held high
performance computing technical posts at MSC.Software, and SGI. Dr. Landman has a Ph.D in Physics from Wayne
State University, a Masters in Physics from Michigan State and a Bachelors in Physics from SUNY Stony Brook.

1. �Note: this is not the case in x86 and x86-64 architectures. Instructions may take a wide range of cycle counts to complete. In these cases, this analysis is still usable, incorporating the average instruction execution time for τ cpu rather
than simply the clock cycle time.

2. �If willing to forgo IEEE754 mathematical operations, FPGAs can be quite fast. These operations are important to reproducibility of calculations, they specify actions and handling of underflow, overflow, exceptions, and related.
Unfortunately, they also consume a significant number of gates on the FPGA, which limits the number of them per FPGA.

3. c.f. http://www.cs.berkeley.edu/~samw/projects/cell/CF06.pdf

4. �J.P. Walters, B. Qudah, and V. Chaudhary. Accelerating the HMMER sequence analysis suite using conventional processors. In AINA ‘06: Proceedings of the 20th International Conference on Advanced Information Networking and
Applications - Volume 1 (AINA ’06), pages 289–294, Washington, DC, USA, 2006. IEEE Computer Society.

5. �J.P. Walters, J. Landman, and V. Chaudhary. Optimized cluster-enabled HMMER searches. In E.G. Talbi and A. Zomaya, editors, To appear in Grids for Bioinformatics and Computational Biology. Wiley & Sons, 2007.

6. �J. Landman, J. Ray, and J. P. Walters. Accelerating HMMER searches on AMD Opteron processors with minimally invasive recoding. In AINA ‘06: Proceedings of the 20th International Conference on Advanced Information Networking and
Applications - Volume 2 (AINA ’06), pages 628–636, Washington, DC, USA, 2006. IEEE Computer Society.

© 2007. Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Opteron and combinations thereof are trademarks of Advanced MicroDevices, Inc. Linux is a registered trademark of Linus Torvalds. Other names
are for informational purposes only and may be trademarks of their respective owners. XXXXXX

Advanced Micro Devices
One AMD Place
Sunnyvale, CA 94088-3453
www.amd.com

